Search results
Results From The WOW.Com Content Network
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.
Equation [3] involves the average velocity v + v 0 / 2 . Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...
Using these properties, the Navier–Stokes equations of motion, expressed in tensor notation, are (for an incompressible Newtonian fluid): = + = + where is a vector representing external forces. Next, each instantaneous quantity can be split into time-averaged and fluctuating components, and the resulting equation time-averaged, [ b ] to yield:
Each component of the velocity vector has a normal distribution with mean = = = and standard deviation = = = /, so the vector has a 3-dimensional normal distribution, a particular kind of multivariate normal distribution, with mean = and covariance = (), where is the 3 × 3 identity matrix.
In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):
The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; [2] the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero. Speed is the magnitude of velocity (a vector), which indicates additionally the direction of ...
The relative velocity of an object B relative to an observer A, denoted (also or ), is the velocity vector of B measured in the rest frame of A. The relative speed v B ∣ A = ‖ v B ∣ A ‖ {\displaystyle v_{B\mid A}=\|\mathbf {v} _{B\mid A}\|} is the vector norm of the relative velocity.
The instantaneous velocity equation comes from finding the limit as t approaches 0 of the average velocity. The instantaneous velocity shows the position function with respect to time. From the instantaneous velocity the instantaneous speed can be derived by getting the magnitude of the instantaneous velocity.