When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.

  3. Sound speed profile - Wikipedia

    en.wikipedia.org/wiki/Sound_speed_profile

    a plot of the speed of sound in the ocean as a function of depth, where the vertical axis corresponds to the depth and the horizontal axis corresponds to the sound speed. By convention, the horizontal axis is placed at the top of the plot, and the vertical axis is labeled with values that increase from top to bottom, thus reproducing visually ...

  4. Speeds of sound of the elements - Wikipedia

    en.wikipedia.org/wiki/Speeds_of_sound_of_the...

    The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional.

  5. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    The speed of sound (i.e., the longitudinal motion of wavefronts) is related to frequency and wavelength of a wave by =.. This is different from the particle velocity , which refers to the motion of molecules in the medium due to the sound, and relates to the plane wave pressure to the fluid density and sound speed by =.

  6. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    where is the Laplace operator, is the acoustic pressure (the local deviation from the ambient pressure), and is the speed of sound. A similar looking wave equation but for the vector field particle velocity is given by

  7. Acoustic impedance - Wikipedia

    en.wikipedia.org/wiki/Acoustic_impedance

    c is the speed of the sound waves traveling in the medium; δ is the particle displacement; x is the space variable along the direction of propagation of the sound waves. This equation is valid both for fluids and solids. In fluids, ρc 2 = K (K stands for the bulk modulus);

  8. String vibration - Wikipedia

    en.wikipedia.org/wiki/String_vibration

    The speed of propagation of a wave is equal to the wavelength divided by the period, or multiplied by the frequency: v = λ τ = λ f . {\displaystyle v={\frac {\lambda }{\tau }}=\lambda f.} If the length of the string is L {\displaystyle L} , the fundamental harmonic is the one produced by the vibration whose nodes are the two ends of the ...

  9. Sound energy density - Wikipedia

    en.wikipedia.org/wiki/Sound_energy_density

    Sound energy density, denoted w, is defined by = where p is the sound pressure;; v is the particle velocity in the direction of propagation;; c is the speed of sound.; The terms instantaneous energy density, maximum energy density, and peak energy density have meanings analogous to the related terms used for sound pressure.