Search results
Results From The WOW.Com Content Network
The noble gases have also been referred to as inert gases, but this label is deprecated as many noble gas compounds are now known. [6] Rare gases is another term that was used, [ 7 ] but this is also inaccurate because argon forms a fairly considerable part (0.94% by volume, 1.3% by mass) of the Earth's atmosphere due to decay of radioactive ...
In chemistry, after nonmetallic elements such as silicon, chlorine, and helium are classed as either metalloids, halogens, or noble gases, the remaining unclassified nonmetallic elements are hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur and selenium.
This page provides supplementary data about the noble gases, which were excluded from the main article to conserve space and preserve focus. Oganesson mostly not included due to the amount of research known about it.
Drifting smoke particles indicate the movement of the surrounding gas.. Gas is one of the four fundamental states of matter.The others are solid, liquid, and plasma. [1] A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide).
From left to right in the periodic table, the nonmetals can be divided into the reactive nonmetals and the noble gases. The reactive nonmetals near the metalloids show some incipient metallic character, such as the metallic appearance of graphite, black phosphorus, selenium and iodine. The noble gases are almost completely inert.
Fifteen nonmetals including B, Si, As, Sb and Se (the six noble gases were not then known; Ge had only been discovered in 1886). Te is shown in a list of the chemical elements but not mentioned elsewhere. Gmelin L 1849, Handbook of Chemistry, vol. 2, Non-metallic elements, H Watts (trans.), Cavendish Society, London.
The noble gases (helium, neon, argon, krypton, xenon and radon) were previously known as 'inert gases' because of their perceived lack of participation in any chemical reactions. The reason for this is that their outermost electron shells (valence shells) are completely filled, so that they have little tendency to gain or lose electrons.
Chemically, the noble gases exhibit relatively high ionization energies, negligible or negative electron affinities, and high to very high electronegativities. The number of compounds formed by noble gases is in the hundreds and continues to expand, [ 131 ] with most of these compounds involving the combination of oxygen or fluorine with either ...