Search results
Results From The WOW.Com Content Network
A rational number has an indefinitely repeating sequence of finite length l, if the reduced fraction's denominator contains a prime factor that is not a factor of the base. If q is the maximal factor of the reduced denominator which is coprime to the base, l is the smallest exponent such that q divides b ℓ − 1 .
3 is the second smallest prime number and the first odd prime number. It is the first unique prime, such that the period length value of 1 of the decimal expansion of its reciprocal, 0.333..., is unique. 3 is a twin prime with 5, and a cousin prime with 7, and the only known number such that ! − 1 and ! + 1 are prime, as well as the only ...
A real number can be expressed by a finite number of decimal digits only if it is rational and its fractional part has a denominator whose prime factors are 2 or 5 or both, because these are the prime factors of 10, the base of the decimal system. Thus, for example, one half is 0.5, one fifth is 0.2, one-tenth is 0.1, and one fiftieth is 0.02.
These sequences of "floats" are called Cauchy sequences of rational numbers (all floats are rational numbers), and we can say that the "infinite result" of any such sequence (including 0.3, 0.33, 0.333, ... and 3.1, 3.14, 3.141, ...) is a real number (even if there is no algorithm that can generate it).
The Archimedean property: any point x before the finish line lies between two of the points P n (inclusive).. It is possible to prove the equation 0.999... = 1 using just the mathematical tools of comparison and addition of (finite) decimal numbers, without any reference to more advanced topics such as series and limits.
In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}
Rational number arithmetic is the branch of arithmetic that deals with the manipulation of numbers that can be expressed as a ratio of two integers. [93] Most arithmetic operations on rational numbers can be calculated by performing a series of integer arithmetic operations on the numerators and the denominators of the involved numbers.
A floating-point number is a rational number, because it can be represented as one integer divided by another; for example 1.45 × 10 3 is (145/100)×1000 or 145,000 /100. The base determines the fractions that can be represented; for instance, 1/5 cannot be represented exactly as a floating-point number using a binary base, but 1/5 can be ...