Search results
Results From The WOW.Com Content Network
"Cytotrophoblast" is the name given to both the inner layer of the trophoblast (also called layer of Langhans) or the cells that live there. It is interior to the syncytiotrophoblast and external to the wall of the blastocyst in a developing embryo.
Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...
Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping. It consists of four phases: initiation, elongation, termination, and recapping.
This core is surrounded by two layers of trophoblasts, the cytotrophoblast and the syncytiotrophoblast. The cytotrophoblast is a layer of mono-nucleated cells that resides underneath the syncytiotrophoblast. [6] The syncytiotrophoblast is composed of fused cytotrophoblasts which then form a layer that covers the placental surface. [6]
The transcription-translation process description, mentioning only the most basic "elementary" processes, consists of: production of mRNA molecules (including splicing), initiation of these molecules with help of initiation factors (e.g., the initiation can include the circularization step though it is not universally required),
A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control. Eukaryotic ...
Before cell differentiation takes place there are two transcription factors, Oct-4 and nanog that are uniformly expressed in all cells, but both of these transcription factors are turned off in the trophoblast once it has formed. [17] The outer cells of the trophectoderm pump sodium ions into the blastocyst, which causes water to enter through ...
This appears to be accomplished by phosphorylation of part of the polymerase by a kinase. Importantly, mediator and transcription factors do not dissociate from the DNA at the time polymerase begins transcription. Rather, the complex remains at the promoter to recruit another RNA polymerase to begin another round of transcription. [3] [h]