Search results
Results From The WOW.Com Content Network
In genetics, chromosome translocation is a phenomenon that results in unusual rearrangement of chromosomes. This includes balanced and unbalanced translocation, with two main types: reciprocal, and Robertsonian translocation. Reciprocal translocation is a chromosome abnormality caused by exchange of parts between non-homologous chromosomes. Two ...
The Philadelphia chromosome or Philadelphia translocation (Ph) is a specific genetic abnormality in chromosome 22 of leukemia cancer cells (particularly chronic myeloid leukemia (CML) cells). This chromosome is defective and unusually short because of reciprocal translocation , t(9;22)(q34;q11), of genetic material between chromosome 9 and ...
The first fusion gene [1] was described in cancer cells in the early 1980s. The finding was based on the discovery in 1960 by Peter Nowell and David Hungerford in Philadelphia of a small abnormal marker chromosome in patients with chronic myeloid leukemia—the first consistent chromosome abnormality detected in a human malignancy, later designated the Philadelphia chromosome. [3]
The central role of DNA damage and epigenetic defects in DNA repair genes in carcinogenesis. DNA damage is considered to be the primary cause of cancer. [17] More than 60,000 new naturally-occurring instances of DNA damage arise, on average, per human cell, per day, due to endogenous cellular processes (see article DNA damage (naturally occurring)).
Chromosomal rearrangement: Every living creature has chromosomes, which are substantial strands of DNA that contain the genes for a cell. A chromosome's DNA sequence may alter each time a cell divides. This could cause a gene to be located near to a proto-oncogene that acts as an "on" switch, keeping it active even when it shouldn't.
The basic number of chromosomes in the somatic cells of an individual or a species is called the somatic number and is designated 2n. In the germ-line (the sex cells) the chromosome number is n (humans: n = 23). [4] [5] p28 Thus, in humans 2n = 46. So, in normal diploid organisms, autosomal chromosomes are present in two copies.
This type involves myc oncogene translocation from chromosome 8 to the Ig lambda locus on chromosome 22. This type of translocation is involved in about 5% of cases of Burkitt lympohoma. The c-myc gene found on chromosome 8 is part of the MYC family of genes that serve as regulators of cellular transcription and is associated with Burkitt lymphoma.
In cancer, c-myc is often constitutively (persistently) expressed. This leads to the increased expression of many genes, some of which are involved in cell proliferation, contributing to the formation of cancer. [1] A common human translocation involving c-myc is critical to the development of most cases of Burkitt lymphoma. [2]