Search results
Results From The WOW.Com Content Network
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
An electron shell is the set of allowed states that share the same principal quantum number, n, that electrons may occupy. In each term of an electron configuration, n is the positive integer that precedes each orbital letter (helium's electron configuration is 1s 2, therefore n = 1, and the orbital contains two
For example, in copper 29 Cu, according to the Madelung rule, the 4s subshell (n + l = 4 + 0 = 4) is occupied before the 3d subshell (n + l = 3 + 2 = 5). The rule then predicts the electron configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2, abbreviated [Ar] 3d 9 4s 2 where [Ar] denotes the configuration of argon, the preceding noble gas.
This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell.
2, 8, 18, 32, 32, 18, 8 (predicted) The noble gases have full valence electron shells . Valence electrons are the outermost electrons of an atom and are normally the only electrons that participate in chemical bonding .
Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2 Ne, 10, neon : 1s 2 2s 2 2p 6 Ar, 18, argon : 1s 2 2s 2 2p 6 3s 2 3p 6 Kr, 36, krypton : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Silver has numerous nuclear isomers, the most stable being 108m Ag (t 1/2 = 418 years), 110m Ag (t 1/2 = 249.79 days) and 106m Ag (t 1/2 = 8.28 days). All of the remaining radioactive isotopes have half-lives of less than an hour, and the majority of these have half-lives of less than three minutes.