When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    During the deep learning era, attention mechanism was developed to solve similar problems in encoding-decoding. [1]In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text.

  3. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Concretely, let the multiple attention heads be indexed by , then we have (,,) = [] ((,,)) where the matrix is the concatenation of word embeddings, and the matrices ,, are "projection matrices" owned by individual attention head , and is a final projection matrix owned by the whole multi-headed attention head.

  4. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Multi-head attention enhances this process by introducing multiple parallel attention heads. Each attention head learns different linear projections of the Q, K, and V matrices. This allows the model to capture different aspects of the relationships between words in the sequence simultaneously, rather than focusing on a single aspect.

  5. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    When each head calculates, according to its own criteria, how much other tokens are relevant for the "it_" token, note that the second attention head, represented by the second column, is focusing most on the first two rows, i.e. the tokens "The" and "animal", while the third column is focusing most on the bottom two rows, i.e. on "tired ...

  6. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of layers can be reduced to a two-layer input-output model.

  7. Attentional shift - Wikipedia

    en.wikipedia.org/wiki/Attentional_shift

    Attention can be guided by top-down processing or via bottom up processing. Posner's model of attention includes a posterior attentional system involved in the disengagement of stimuli via the parietal cortex, the shifting of attention via the superior colliculus and the engagement of a new target via the pulvinar. The anterior attentional ...

  8. File:Multiheaded attention, block diagram.png - Wikipedia

    en.wikipedia.org/wiki/File:Multiheaded_attention...

    Multiheaded_attention,_block_diagram.png (656 × 600 pixels, file size: 32 KB, MIME type: image/png) This is a file from the Wikimedia Commons . Information from its description page there is shown below.

  9. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the "neurons" in multi-layer neural ...