When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Multiplication can also be thought of as scaling. Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit. Area of a cloth 4.5m × 2.5m = 11.25m 2; 4 ⁠ 1 / 2 ⁠ × 2 ⁠ 1 / 2 ⁠ = 11 ⁠ 1 / 4 ⁠

  3. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors. For example, 21 is the product of 3 and 7 (the result of multiplication), and x ⋅ ( 2 + x ) {\displaystyle x\cdot (2+x)} is the product of x {\displaystyle x} and ( 2 + x ) {\displaystyle ...

  4. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    If one has a two-digit number, take it and add the two numbers together and put that sum in the middle, and one can get the answer. For example: 24 x 11 = 264 because 2 + 4 = 6 and the 6 is placed in between the 2 and the 4. Second example: 87 x 11 = 957 because 8 + 7 = 15 so the 5 goes in between the 8 and the 7 and the 1 is carried to the 8.

  5. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Karatsuba multiplication is an O(n log 2 3) ≈ O(n 1.585) divide and conquer algorithm, that uses recursion to merge together sub calculations. By rewriting the formula, one makes it possible to do sub calculations / recursion. By doing recursion, one can solve this in a fast manner.

  6. Multiplication sign - Wikipedia

    en.wikipedia.org/wiki/Multiplication_sign

    In algebra, it is a notation to resolve ambiguity (for instance, "b times 2" may be written as b⋅2, to avoid being confused with a value called b 2). This notation is used wherever multiplication should be written explicitly, such as in " ab = a ⋅2 for b = 2 "; this usage is also seen in English-language texts.

  7. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    One of the basic principles of algebra is that one can multiply both sides of an equation by the same expression without changing the equation's solutions. However, strictly speaking, this is not true, in that multiplication by certain expressions may introduce new solutions that were not present before. For example, consider the following ...

  8. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

  9. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Divide the highest term of the remainder by the highest term of the divisor (x 2 ÷ x = x). Place the result (+x) below the bar. x 2 has been divided leaving no remainder, and can therefore be marked as used. The result x is then multiplied by the second term in the divisor −3 = −3x. Determine the partial remainder by subtracting 0x − ...