Ad
related to: coordination sphere chemistry pptstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In coordination chemistry, the first coordination sphere refers to the array of molecules and ions (the ligands) directly attached to the central metal atom. The second coordination sphere consists of molecules and ions that attached in various ways to the first coordination sphere.
Cisplatin, PtCl 2 (NH 3) 2, is a coordination complex of platinum(II) with two chloride and two ammonia ligands.It is one of the most successful anticancer drugs. A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands ...
In the absence of the metal ion, the same organic reactants produce different products. The term is mainly used in coordination chemistry. The template effects emphasizes the pre-organization provided by the coordination sphere, although the coordination modifies the electronic properties (acidity, electrophilicity, etc.) of ligands. [1]
The coordination geometry of thallium(I) is not experimentally known, but it is likely to be hemidirected with a large gap in the coordination sphere. [27] Silicon is likewise not a metal, and silicon(IV) is a strong enough acid to deprotonate bound OH −. Thus various forms of hydrated silica (silicic acid) form. [43]
In coordination chemistry and crystallography, the geometry index or structural parameter (τ) is a number ranging from 0 to 1 that indicates what the geometry of the coordination center is. The first such parameter for 5-coordinate compounds was developed in 1984. [ 1 ]
The mechanism features an intermediate coordination complex that contains both the growing polymer chain and the monomer (alkene). These ligands combine within the coordination sphere of the metal to form a polymer chain that is elongated by two carbons. [1] The box represents a vacant (or extremely labile) coordination site.
Marcus theory is used to describe a number of important processes in chemistry and biology, including photosynthesis, corrosion, certain types of chemiluminescence, charge separation in some types of solar cells and more. Besides the inner and outer sphere applications, Marcus theory has been extended to address heterogeneous electron transfer.
In coordination chemistry, the ligand cone angle (θ) is a measure of the steric bulk of a ligand in a transition metal coordination complex. It is defined as the solid angle formed with the metal at the vertex of a cone and the outermost edge of the van der Waals spheres of the ligand atoms at the perimeter of the base of the cone.