When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Natural frequency - Wikipedia

    en.wikipedia.org/wiki/Natural_frequency

    Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.

  3. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    The shape of a standing wave in a string fixed at its boundaries is an example of an eigenfunction of a differential operator. The admissible eigenvalues are governed by the length of the string and determine the frequency of oscillation.

  4. Standing wave - Wikipedia

    en.wikipedia.org/wiki/Standing_wave

    Such a standing wave may be formed when a wave is transmitted into one end of a transmission line and is reflected from the other end by an impedance mismatch, i.e., discontinuity, such as an open circuit or a short. [8] The failure of the line to transfer power at the standing wave frequency will usually result in attenuation distortion.

  5. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    Panels (E–F) show two different wave functions that are solutions of the Schrödinger equation but not standing waves. The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system.

  6. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    A so-called eigenmode is a solution that oscillates in time with a well-defined constant angular frequency ω, so that the temporal part of the wave function takes the form e −iωt = cos(ωt) − i sin(ωt), and the amplitude is a function f(x) of the spatial variable x, giving a separation of variables for the wave function: (,) = ().

  7. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    The oscillation frequency of the standing wave, multiplied by the Planck constant, is the energy of the state according to the Planck–Einstein relation. Stationary states are quantum states that are solutions to the time-independent Schrödinger equation : H ^ | Ψ = E Ψ | Ψ , {\displaystyle {\hat {H}}|\Psi \rangle =E_{\Psi }|\Psi \rangle ...

  8. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    A wave function can be an eigenvector of an observable, in which case it is called an eigenstate, and the associated eigenvalue corresponds to the value of the observable in that eigenstate. More generally, a quantum state will be a linear combination of the eigenstates, known as a quantum superposition .

  9. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The two-dimensional analogue of the vibrating string is the vibrating membrane, with the edges clamped to be motionless. The Helmholtz equation was solved for many basic shapes in the 19th century: the rectangular membrane by Siméon Denis Poisson in 1829, the equilateral triangle by Gabriel Lamé in 1852, and the circular membrane by Alfred Clebsch in 1862.