Search results
Results From The WOW.Com Content Network
In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex .
A circuit may refer to a closed trail or an element of the cycle space (an Eulerian spanning subgraph). The circuit rank of a graph is the dimension of its cycle space. circumference The circumference of a graph is the length of its longest simple cycle. The graph is Hamiltonian if and only if its circumference equals its order.
Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...
Eulerian circuit, Euler cycle or Eulerian path – a path through a graph that takes each edge once Eulerian graph has all its vertices spanned by an Eulerian path; Euler class; Euler diagram – popularly called "Venn diagrams", although some use this term only for a subclass of Euler diagrams. Euler tour technique
The first use of "Eulerian circles" is commonly attributed to Swiss mathematician Leonhard Euler (1707–1783). In the United States, both Venn and Euler diagrams were incorporated as part of instruction in set theory as part of the new math movement of the 1960s.
An Eulerian circuit is a directed closed trail that visits each edge exactly once. In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v).
Hierholzer proved that a connected graph has an Eulerian trail if and only if exactly zero or two of its vertices have an odd degree. This result had been given, with no proof of the 'if' part, by Leonhard Euler in 1736. Hierholzer apparently presented his work to a circle of fellow mathematicians not long before his premature death in 1871.
Instead, the fluid distribution in a cell an interface is obtained by using the volume fraction distribution of neighbouring cells. The Simple Line Interface Calculation (SLIC) by Noh and Woodward from 1976 [5] uses a simple geometry to reconstruct the interface. In each cell the interface is approximated as a line parallel to one of the ...