Search results
Results From The WOW.Com Content Network
A vertex with a large degree, also called a heavy node, results in a large diagonal entry in the Laplacian matrix dominating the matrix properties. Normalization is aimed to make the influence of such vertices more equal to that of other vertices, by dividing the entries of the Laplacian matrix by the vertex degrees.
where the degree of a vertex counts the number of times an edge terminates at that vertex. In an undirected graph , this means that each loop increases the degree of a vertex by two. In a directed graph , the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at ...
The Laplacian matrix is a modified form of the adjacency matrix that incorporates information about the degrees of the vertices, and is useful in some calculations such as Kirchhoff's theorem on the number of spanning trees of a graph.
In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid.For the case of a finite-dimensional graph (having a finite number of edges and vertices), the discrete Laplace operator is more commonly called the Laplacian matrix.
The graph Laplacian can be and commonly is constructed from the adjacency matrix. The construction can be performed matrix-free, i.e., without explicitly forming the matrix of the graph Laplacian and no AO. It can also be performed in-place of the adjacency matrix without increasing the memory footprint.
In the mathematical field of graph theory, Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about the number of spanning trees in a graph, showing that this number can be computed in polynomial time from the determinant of a submatrix of the graph's Laplacian matrix; specifically, the number is equal to any cofactor of the Laplacian matrix.
When the distances between input points are interpreted as a graph, then the Laplacian matrix of the graph can help to estimate the marginal distribution. Suppose that the input data include ℓ {\displaystyle \ell } labeled examples (pairs of an input x {\displaystyle x} and a label y {\displaystyle y} ) and u {\displaystyle u} unlabeled ...
The smallest pair of cospectral mates is {K 1,4, C 4 ∪ K 1}, comprising the 5-vertex star and the graph union of the 4-vertex cycle and the single-vertex graph [1]. The first example of cospectral graphs was reported by Collatz and Sinogowitz [2] in 1957. The smallest pair of polyhedral cospectral mates are enneahedra with eight vertices each ...