Search results
Results From The WOW.Com Content Network
That is, examples of a more frequent class tend to dominate the prediction of the new example, because they tend to be common among the k nearest neighbors due to their large number. [6] One way to overcome this problem is to weight the classification, taking into account the distance from the test point to each of its k nearest neighbors.
In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]
Examples with numerals have been given above in the Overview section. An example with a demonstrative is the phrase for "this person" — 这个人 zhè ge rén. The character 个 is a classifier, literally meaning "individual" or "single entity", so the entire phrase translates literally as "this individual person" or "this single person".
Deep linguistic processing is a natural language processing framework which draws on theoretical and descriptive linguistics. It models language predominantly by way of theoretical syntactic/semantic theory (e.g. CCG , HPSG , LFG , TAG , the Prague School ).
Natural-language programming (NLP) is an ontology-assisted way of programming in terms of natural-language sentences, e.g. English. [1] A structured document with Content, sections and subsections for explanations of sentences forms a NLP document, which is actually a computer program .
Lexical choice is the subtask of Natural language generation that involves choosing the content words (nouns, non-auxiliary verbs, adjectives, and adverbs) in a generated text. Function words (determiners, for example) are usually chosen during realisation.
It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity. The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a ...
Sentence boundary disambiguation (SBD), also known as sentence breaking, sentence boundary detection, and sentence segmentation, is the problem in natural language processing of deciding where sentences begin and end.