When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The critical points of Lagrangians occur at saddle points, rather than at local maxima (or minima). [ 4 ] [ 17 ] Unfortunately, many numerical optimization techniques, such as hill climbing , gradient descent , some of the quasi-Newton methods , among others, are designed to find local maxima (or minima) and not saddle points.

  4. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article. This is relevant in optimization, which aims to find (global) minima of the function .

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method can be used to find a minimum or maximum of a function f(x). The derivative is zero at a minimum or maximum, so local minima and maxima can be found by applying Newton's method to the derivative. [39] The iteration becomes: + = ′ ″ ().

  6. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.

  7. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Finding the extrema of functionals is similar to finding the maxima and minima of functions. The maxima and minima of a function may be located by finding the points where its derivative vanishes (i.e., is equal to zero). The extrema of functionals may be obtained by finding functions for which the functional derivative is equal to zero.

  8. Adequality - Wikipedia

    en.wikipedia.org/wiki/Adequality

    Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus.

  9. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.