Search results
Results From The WOW.Com Content Network
If the MOSFET is an n-channel or nMOS FET, then the source and drain are n+ regions and the body is a p region. If the MOSFET is a p-channel or pMOS FET, then the source and drain are p+ regions and the body is a n region. The source is so named because it is the source of the charge carriers (electrons for n-channel, holes for p-channel) that ...
Fairchild FQD19N10 - N-Channel QFET MOSFET 100 V, 15.6 A, 100 mΩ. A quantum field-effect transistor (QFET) or quantum-well field-effect transistor (QWFET) is a type of MOSFET (metal–oxide–semiconductor field-effect transistor) [1] [2] [3] that takes advantage of quantum tunneling to greatly increase the speed of transistor operation by eliminating the traditional transistor's area of ...
The DGMOSFET (dual-gate MOSFET) or DGMOS, a MOSFET with two insulated gates. The IGBT (insulated-gate bipolar transistor) is a device for power control. It has a structure akin to a MOSFET coupled with a bipolar-like main conduction channel. These are commonly used for the 200–3000 V drain-to-source voltage range of operation.
A nanowire MOSFET's current–voltage characteristic (left, using logarithmic y-axis) and a simulation of the electron density (right) forming a conductive inversion channel which connects at the ~0.45 V threshold voltage.
MOSFET, showing gate (G), body (B), source (S), and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).. The MOSFET (metal–oxide–semiconductor field-effect transistor) [1] is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon.
A MOSFET can be made to operate as a resistor, so the whole circuit can be made with n-channel MOSFETs only. NMOS circuits are slow to transition from low to high. When transitioning from high to low, the transistors provide low resistance, and the capacitive charge at the output drains away very quickly (similar to discharging a capacitor ...
Overdrive voltage, usually abbreviated as V OV, is typically referred to in the context of MOSFET transistors.The overdrive voltage is defined as the voltage between transistor gate and source (V GS) in excess of the threshold voltage (V TH) where V TH is defined as the minimum voltage required between gate and source to turn the transistor on (allow it to conduct electricity).
NXP 7030AL - N-channel TrenchMOS logic level FET IRF640 Power Mosfet die. The power MOSFET is the most widely used power semiconductor device in the world. [3] As of 2010, the power MOSFET accounts for 53% of the power transistor market, ahead of the insulated-gate bipolar transistor (27%), RF power amplifier (11%) and bipolar junction transistor (9%). [24]