Search results
Results From The WOW.Com Content Network
Thus, even odds 1/1 are quoted in decimal odds as 2. The 4/1 fractional odds discussed above are quoted as 5, while the 1/4 odds are quoted as 1.25. It is considered to be ideal for parlay betting because the odds to be paid out are simply the product of the odds for each outcome wagered on.
6 1 2 1 1 −1 4 5 9. and would be written in modern notation as 6 1 / 4 , 1 1 / 5 , and 2 − 1 / 9 (i.e., 1 8 / 9 ). The horizontal fraction bar is first attested in the work of Al-Hassār (fl. 1200), [35] a Muslim mathematician from Fez, Morocco, who specialized in Islamic inheritance jurisprudence.
Thus even odds 1/1 are quoted in decimal odds as 2.00. The 4/1 fractional odds discussed above are quoted as 5.00, while the 1/4 odds are quoted as 1.25. This is considered to be ideal for parlay betting, because the odds to be paid out are simply the product of the odds for each outcome wagered on. When looking at decimal odds in betting terms ...
A decimal separator is a symbol that separates the integer part from the fractional part of a number written in decimal form. Different countries officially designate different symbols for use as the separator. The choice of symbol can also affect the choice of symbol for the thousands separator used in digit grouping.
A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number , the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.
For example, in duodecimal, 1 / 2 = 0.6, 1 / 3 = 0.4, 1 / 4 = 0.3 and 1 / 6 = 0.2 all terminate; 1 / 5 = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; 1 / 7 = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
For comparison, the same number in decimal representation: 1.125 × 2 3 (using decimal representation), or 1.125B3 (still using decimal representation). Some calculators use a mixed representation for binary floating point numbers, where the exponent is displayed as decimal number even in binary mode, so the above becomes 1.001 b × 10 b 3 d or ...