Search results
Results From The WOW.Com Content Network
Prey detection is the process by which predators are able to detect and locate their prey via sensory signals. This article treats predation in its broadest sense, i.e. where one organism eats another.
Anti-predator adaptation in action: the kitefin shark (a–c) and the Atlantic wreckfish (d–f) attempt to prey on hagfishes. First, the predators approach their potential prey. Predators bite or try to swallow the hagfishes, but the hagfishes have already projected jets of slime (arrows) into the predators' mouths.
Detection theory or signal detection theory is a means to measure the ability to differentiate between information-bearing patterns (called stimulus in living organisms, signal in machines) and random patterns that distract from the information (called noise, consisting of background stimuli and random activity of the detection machine and of the nervous system of the operator).
Novelty detection is the mechanism by which an intelligent organism is able to identify an incoming sensory pattern as being hitherto unknown. If the pattern is sufficiently salient or associated with a high positive or strong negative utility , it will be given computational resources for effective future processing.
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1] Well-researched domains of object detection include face detection and pedestrian detection.
This is done using machine learning techniques that process different modalities, such as speech recognition, natural language processing, or facial expression detection. The goal of most of these techniques is to produce labels that would match the labels a human perceiver would give in the same situation: For example, if a person makes a ...
Thus, prey feature detection is not an all-or-nothing condition, but rather a matter of degree: the greater an object's releasing value as a prey stimulus, the stronger is prey-selective T5.2 neuron's discharge frequency, the shorter is toad's prey-catching response latency, and the higher is the number of prey-catching responses during a ...
Tinbergen suggested that this prey selection was caused by an attentional bias that improved detection of one type of insect while suppressing detection of others. This "attentional priming" is commonly said to result from a pretrial activation of a mental representation of the attended object, which Tinbergen called a "searching image".