Search results
Results From The WOW.Com Content Network
This is a list of axioms as that term is understood in mathematics. In epistemology , the word axiom is understood differently; see axiom and self-evidence . Individual axioms are almost always part of a larger axiomatic system .
In many popular versions of axiomatic set theory, the axiom schema of specification, [1] also known as the axiom schema of separation (Aussonderungsaxiom), [2] subset axiom [3], axiom of class construction, [4] or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set.
Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...
An axiom schema is a formula in the metalanguage of an axiomatic system, in which one or more schematic variables appear. These variables, which are metalinguistic constructs, stand for any term or subformula of the system, which may or may not be required to satisfy certain conditions.
Set theory as a foundation for mathematical analysis, topology, abstract algebra, and discrete mathematics is likewise uncontroversial; mathematicians accept (in principle) that theorems in these areas can be derived from the relevant definitions and the axioms of set theory. However, it remains that few full derivations of complex mathematical ...
The following particular axiom set is from Kunen (1980). The axioms in order below are expressed in a mixture of first order logic and high-level abbreviations. Axioms 1–8 form ZF, while the axiom 9 turns ZF into ZFC. Following Kunen (1980), we use the equivalent well-ordering theorem in place of the axiom of choice for axiom 9.
The axioms for fields, plus axioms for each prime number p stating that if p 1 = 0 (i.e. the field has characteristic p), then every field element has a pth root. Algebraically closed fields of characteristic p. The axioms for fields, plus for every positive n the axiom that all polynomials of degree n have a root, plus axioms fixing the ...
This category is for axioms in the language of set theory; roughly speaking, ones that "talk about sets". Inclusion in this category does not necessarily imply that the axiom in question is an accepted axiom, or that it is believed to be true in the von Neumann universe of sets.