Search results
Results From The WOW.Com Content Network
This impedance is termed the internal resistance of the source. When the power source delivers current, the measured voltage output is lower than the no-load voltage; the difference is the voltage drop (the product of current and resistance) caused by the internal resistance. The concept of internal resistance applies to all kinds of electrical ...
Ideal switching elements (approximated by transistors operated outside of their active mode) have no resistance when "on" and carry no current when "off", and so converters with ideal components would operate with 100% efficiency (i.e., all input power is delivered to the load; no power is wasted as dissipated heat).
In this type the resistance varies with the applied voltage or current. Negative resistance vs positive resistance: If the I–V curve has a positive slope (increasing to the right) throughout, it represents a positive resistance. An I–V curve that is nonmonotonic (having peaks and valleys) represents a device which has negative resistance.
Internal resistance is a concept that helps model the electrical consequences of the complex chemical reactions inside a battery. It is impossible to directly measure the internal resistance of a battery, but it can be calculated from current and voltage data measured from a circuit.
One is its internal resistance and the other is its compliance voltage. The compliance voltage is the maximum voltage that the current source can supply to a load. Over a given load range, it is possible for some types of real current sources to exhibit nearly infinite internal resistance.
A buck converter or step-down converter is a DC-to-DC converter which decreases voltage, while increasing current, from its input to its output . It is a class of switched-mode power supply . Switching converters (such as buck converters) provide much greater power efficiency as DC-to-DC converters than linear regulators , which are simpler ...
(electronic) (power) converter An operative unit for electronic power conversion, comprising one or more electronic valve devices, transformers and filters if necessary and auxiliaries if any. [f] converter connection The electrical arrangement of valve arms and other components essential for the function of the main power circuit of a converter.
No real voltage source is ideal; all have a non-zero effective internal resistance, and none can supply unlimited current. However, the internal resistance of a real voltage source is effectively modeled in linear circuit analysis by combining a non-zero resistance in series with an ideal voltage source (a Thévenin equivalent circuit).