When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. String metric - Wikipedia

    en.wikipedia.org/wiki/String_metric

    The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.

  3. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    The normalized angle, referred to as angular distance, between any two vectors and is a formal distance metric and can be calculated from the cosine similarity. [5] The complement of the angular distance metric can then be used to define angular similarity function bounded between 0 and 1, inclusive.

  4. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    Edit distance matrix for two words using cost of substitution as 1 and cost of deletion or insertion as 0.5. For example, the Levenshtein distance between "kitten" and "sitting" is 3, since the following 3 edits change one into the other, and there is no way to do it with fewer than 3 edits: kitten → sitten (substitution of "s" for "k"),

  5. Milvus (vector database) - Wikipedia

    en.wikipedia.org/wiki/Milvus_(vector_database)

    Euclidean distance, inner product distance and cosine distance support for floating-point data, Hamming distance and jaccard distance for binary data, Support of graph indices (including HNSW), Inverted-lists based indices and a brute-force search.

  6. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...

  7. Vector space model - Wikipedia

    en.wikipedia.org/wiki/Vector_space_model

    Candidate documents from the corpus can be retrieved and ranked using a variety of methods. Relevance rankings of documents in a keyword search can be calculated, using the assumptions of document similarities theory, by comparing the deviation of angles between each document vector and the original query vector where the query is represented as a vector with same dimension as the vectors that ...

  8. Hamming space - Wikipedia

    en.wikipedia.org/wiki/Hamming_space

    The total distance between any two binary strings is then the total number of positions at which the corresponding bits are different, called the Hamming distance. [1] [2] Hamming spaces are named after American mathematician Richard Hamming, who introduced the concept in 1950. [3] They are used in the theory of coding signals and transmission.

  9. Damerau–Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Damerau–Levenshtein_distance

    In information theory and computer science, the Damerau–Levenshtein distance (named after Frederick J. Damerau and Vladimir I. Levenshtein [1] [2] [3]) is a string metric for measuring the edit distance between two sequences.