Search results
Results From The WOW.Com Content Network
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Consider a clipping operation of a sine wave where amplitudes larger than 0.5 are to be set to 0.5. Using S-Lang, this can be done by y = sin(x); y[where(abs(y)>0.5)] = 0.5;
The Euler method is often not accurate enough. In more precise terms, it only has order one (the concept of order is explained below). This caused mathematicians to look for higher-order methods. One possibility is to use not only the previously computed value y n to determine y n+1, but to make the
For one-dimensional arrays, this facility may be provided as an operation append(A,x) that increases the size of the array A by one and then sets the value of the last element to x. Other array types (such as Pascal strings) provide a concatenation operator, which can be used together with slicing to achieve that effect and more.
SymPy, a Python package that can solve ODEs symbolically Julia (programming language) , a high-level language primarily intended for numerical computations. SageMath , an open-source application that uses a Python-like syntax with a wide range of capabilities spanning several branches of mathematics.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
SymPy is an open-source Python library for symbolic computation.It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]
The next step is to multiply the above value by the step size , which we take equal to one here: h ⋅ f ( y 0 ) = 1 ⋅ 1 = 1. {\displaystyle h\cdot f(y_{0})=1\cdot 1=1.} Since the step size is the change in t {\displaystyle t} , when we multiply the step size and the slope of the tangent, we get a change in y {\displaystyle y} value.
Differential equations are prominent in many scientific areas. Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations.