Search results
Results From The WOW.Com Content Network
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
All data as presented in these tables is for materials in their standard state, which is at 25 °C and 100 kPa by definition. If values are given for other conditions, this is explicitly indicated. If values are given for other conditions, this is explicitly indicated.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
Its solubility product K sp of 5.02 × 10 −6 at 25 °C, [1] its dissociation in water is large enough that its solutions are basic according to the following dissolution reaction: Ca(OH) 2 → Ca 2+ + 2 OH −. The solubility is affected by the common-ion effect. Its solubility drastically decreases upon addition of hydroxide or calcium sources.
PbCl 2 is sparingly soluble in water, solubility product K sp = 1.7 × 10 −5 at 20 °C. It is one of only 5 commonly water-insoluble chlorides, the other 4 being thallium(I) chloride , silver chloride (AgCl) with K sp = 1.8 × 10 −10 , copper(I) chloride (CuCl) with K sp = 1.72 × 10 −7 and mercury(I) chloride (Hg 2 Cl 2 ) with K sp = 1.3 ...
A solubility equilibrium exists when a chemical compound in the solid state is in chemical equilibrium with a solution containing the compound. This type of equilibrium is an example of dynamic equilibrium in that some individual molecules migrate between the solid and solution phases such that the rates of dissolution and precipitation are equal to one another.
K3PO4. Tripotassium phosphate has few industrial applications, however it is commonly used as a base in laboratory-scale organic chemistry. Being insoluble in organic solvents, it is an easily removed proton acceptor in organic synthesis.