Ad
related to: elevated oxygen concentration
Search results
Results From The WOW.Com Content Network
Hyperoxia is the state of being exposed to high levels of oxygen; it may refer to organisms, cells and tissues that are experiencing excessive oxygenation, [1] or to an abnormally high oxygen concentration in an environment (e.g. a body of water).
Oxygen toxicity is a concern for underwater divers, those on high concentrations of supplemental oxygen, and those undergoing hyperbaric oxygen therapy. The result of breathing increased partial pressures of oxygen is hyperoxia, an excess of oxygen in body tissues. The body is affected in different ways depending on the type of exposure.
Many people with chronic obstructive pulmonary disease have a low partial pressure of oxygen in the blood and high partial pressure of carbon dioxide.Treatment with supplemental oxygen may improve their well-being; alternatively, in some this can lead to the adverse effect of elevating the carbon dioxide content in the blood (hypercapnia) to levels that may become toxic.
The effects of high altitude on humans are mostly the consequences of reduced partial pressure of oxygen in the atmosphere. The medical problems that are direct consequence of high altitude are caused by the low inspired partial pressure of oxygen, which is caused by the reduced atmospheric pressure, and the constant gas fraction of oxygen in ...
Dissolved oxygen levels required by various species in the Chesapeake Bay (US). In aquatic environments, oxygen saturation is a ratio of the concentration of "dissolved oxygen" (DO, O 2), to the maximum amount of oxygen that will dissolve in that water body, at the temperature and pressure which constitute stable equilibrium conditions.
At 1,600 meters' altitude (about one mile high) oxygen saturation should be above 92%. [11] An SaO 2 (arterial oxygen saturation) value below 90% causes hypoxia (which can also be caused by anemia). Hypoxia due to low SaO 2 is indicated by cyanosis, but oxygen saturation does not directly reflect tissue oxygenation. The affinity of hemoglobin ...
In the capillaries, where oxygen concentration levels are lower, the T state is favored, in order to facilitate the delivery of oxygen to the tissues. The Bohr effect is dependent on this allostery, as increases in CO 2 and H + help stabilize the T state and ensure greater oxygen delivery to muscles during periods of elevated cellular respiration.
The arteriovenous oxygen difference is usually taken by comparing the difference in the oxygen concentration of oxygenated blood in the femoral, brachial, or radial artery and the oxygen concentration in the deoxygenated blood from the mixed supply found in the pulmonary artery (as an indicator of the typical mixed venous supply).