Search results
Results From The WOW.Com Content Network
[nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5]
Geosynchronous orbit (GSO): An orbit around the Earth with a period equal to one sidereal day, which is Earth's average rotational period of 23 hours, 56 minutes, 4.091 seconds. For a nearly circular orbit, this implies an altitude of approximately 35,786 kilometers (22,236 mi).
To escape the Solar System from a location at a distance from the Sun equal to the distance Sun–Earth, but not close to the Earth, requires around 42 km/s velocity, but there will be "partial credit" for the Earth's orbital velocity for spacecraft launched from Earth, if their further acceleration (due to the propulsion system) carries them ...
Orbit of AMC-8 satellite around the Earth in 2000, transferring from a geostationary transfer orbit to a geostationary orbit. An orbital spaceflight (or orbital flight) is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit.
The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}
The increase per meter would be 4.8 J/kg; this rate corresponds to one half of the local gravity of 9.5 m/s 2. The speed is 7.8 km/s, the net delta-v to reach this orbit is 8.0 km/s. Taking into account the rotation of the Earth, the delta-v is up to 0.46 km/s less (starting at the equator and going east) or more (if going west).
The pull of gravity in LEO is only slightly less than on the Earth's surface. This is because the distance to LEO from the Earth's surface is much less than the Earth's radius. However, an object in orbit is in a permanent free fall around Earth, because in orbit the gravitational force and the centrifugal force balance each other out.
What is left are two quantities: P, the period of Earth's orbit or the sidereal year, a quantity known precisely by measurement over centuries, and m, the mass of the Earth–Moon system. Again plugging in the measured values as they were known in Gauss's time, P = 365.256 3835 days, m = 1 / 354 710 solar masses, [ clarification needed ...