Search results
Results From The WOW.Com Content Network
For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing system. Thus two indices are used for a two-dimensional array, three for a three-dimensional array, and n for an n-dimensional array.
A two-dimensional array stored as a one-dimensional array of one-dimensional arrays (rows) Many languages support only one-dimensional arrays. In those languages, a multi-dimensional array is typically represented by an Iliffe vector, a one-dimensional array of references to arrays of one dimension less. A two-dimensional array, in particular ...
A matrix is typically stored as a two-dimensional array. Each entry in the array represents an element a i,j of the matrix and is accessed by the two indices i and j. Conventionally, i is the row index, numbered from top to bottom, and j is the column index, numbered from left to right.
For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
An array with stride of exactly the same size as the size of each of its elements is contiguous in memory. Such arrays are sometimes said to have unit stride . Unit stride arrays are sometimes more efficient than non-unit stride arrays, but non-unit stride arrays can be more efficient for 2D or multi-dimensional arrays , depending on the ...
In mathematics, computer science and especially graph theory, a distance matrix is a square matrix (two-dimensional array) containing the distances, taken pairwise, between the elements of a set. [1] Depending upon the application involved, the distance being used to define this matrix may or may not be a metric.