Search results
Results From The WOW.Com Content Network
Specific volume is the volume occupied by a unit of mass of a material. [1] In many cases, the specific volume is a useful quantity to determine because, as an intensive property, it can be used to determine the complete state of a system in conjunction with another independent intensive variable. The specific volume also allows systems to be ...
Heat capacity (constant volume) C v: J/K Specific heat capacity (constant volume) c v: J/(kg·K) Helmholtz free energy: A, F: J Helmholtz free entropy: Φ: J/K Internal energy: U: J Specific internal energy: u: J/kg Internal pressure: π T: Pa Mass: m: kg Particle number: N i – Chemical potential μ i: Pressure: p: Pa Volume V: Temperature: T ...
For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.
where V 100 is the volume occupied by a given sample of gas at 100 °C; V 0 is the volume occupied by the same sample of gas at 0 °C; and k is a constant which is the same for all gases at constant pressure. This equation does not contain the temperature and so is not what became known as Charles's Law.
Specific volume is commonly applied to: Molar volume; Volume (thermodynamics) Partial molar volume; Imagine a variable-volume, airtight chamber containing a certain number of atoms of oxygen gas. Consider the following four examples: If the chamber is made smaller without allowing gas in or out, the density increases and the specific volume ...
The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.
In thermodynamics, Bridgman's thermodynamic equations are a basic set of thermodynamic equations, derived using a method of generating multiple thermodynamic identities involving a number of thermodynamic quantities.
Volume (V) refers to the space occupied by the system. Composition defines the amount of each component present for systems with more than one component (e.g., mixtures). Thermodynamic Path