Ad
related to: einstein's formulation of gravity equation pdf
Search results
Results From The WOW.Com Content Network
The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.
The Einstein–Infeld–Hoffmann equations of motion, jointly derived by Albert Einstein, Leopold Infeld and Banesh Hoffmann, are the differential equations describing the approximate dynamics of a system of point-like masses due to their mutual gravitational interactions, including general relativistic effects.
In 1907, Hermann Minkowski, Einstein's former mathematics professor at the Swiss Federal Polytechnic, introduced Minkowski space, a geometric formulation of Einstein's special theory of relativity where the geometry included not only space but also time. The basic entity of this new geometry is four-dimensional spacetime.
The core concept of general-relativistic model-building is that of a solution of Einstein's equations. Given both Einstein's equations and suitable equations for the properties of matter, such a solution consists of a specific semi-Riemannian manifold (usually defined by giving the metric in specific coordinates), and specific matter fields ...
We will derive the Einstein equations by varying this action with respect to the tetrad and spin connection as independent quantities. As a shortcut to performing the calculation we introduce a connection compatible with the tetrad, ∇ α e β I = 0. {\displaystyle \nabla _{\alpha }e_{\beta }^{I}=0.} [ 2 ] The connection associated with this ...
In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.
There is Robertson's test theory (1949) which predicts different experimental results from Einstein's special relativity, and there is the Mansouri–Sexl theory (1977) which is equivalent to Robertson's theory. There is also Edward's theory (1963) which cannot be called a test theory because it is physically equivalent to special relativity.
The Palatini formulation of general relativity assumes the metric and connection to be independent, and varies with respect to both independently, which makes it possible to include fermionic matter fields with non-integer spin. The Einstein equations in the presence of matter are given by adding the matter action to the Einstein–Hilbert action.