Ads
related to: small square shower tile with hexagon tile floor patterns small and big squares
Search results
Results From The WOW.Com Content Network
In geometry, a tiling is a partition of the plane (or any other geometric setting) into closed sets (called tiles), without gaps or overlaps (other than the boundaries of the tiles). [1] A tiling is considered periodic if there exist translations in two independent directions which map the tiling onto itself.
Covering a flat surface ("the plane") with some pattern of geometric shapes ("tiles"), with no overlaps or gaps, is called a tiling. The most familiar tilings, such as covering a floor with squares meeting edge-to-edge, are examples of periodic tilings. If a square tiling is shifted by the width of a tile, parallel to the sides of the tile, the ...
The truncated square tiling is drawn over an equilateral chamfered square tiling. In geometry, the chamfered square tiling or semitruncated square tiling is a tiling of the Euclidean plane. It is a square tiling with each edge chamfered into new hexagonal faces. It can also be seen as the intersection of two truncated square tilings with offset ...
The Laves tilings have vertices at the centers of the regular polygons, and edges connecting centers of regular polygons that share an edge. The tiles of the Laves tilings are called planigons. This includes the 3 regular tiles (triangle, square and hexagon) and 8 irregular ones. [4] Each vertex has edges evenly spaced around it.
An aperiodic tiling uses a small set of tile shapes that cannot form a repeating pattern (an aperiodic set of prototiles). A tessellation of space, also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions. A real physical tessellation is a tiling made of materials such as cemented ceramic squares or hexagons.
One variations on this pattern, often called a Mediterranean pattern, is shown in stone tiles with smaller squares and diagonally aligned with the borders. Other variations stretch the squares or octagons. The Pythagorean tiling alternates large and small squares, and may be seen as topologically identical to the truncated square tiling. The ...