When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  3. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    Redox (/ ˈ r ɛ d ɒ k s / RED-oks, / ˈ r iː d ɒ k s / REE-doks, reductionoxidation [2] or oxidationreduction [3]: 150 ) is a type of chemical reaction in which the oxidation states of the reactants change. [4] Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...

  4. Half-reaction - Wikipedia

    en.wikipedia.org/wiki/Half-reaction

    For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...

  5. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  6. Oxidation state - Wikipedia

    en.wikipedia.org/wiki/Oxidation_state

    The increase in the oxidation state of an atom, through a chemical reaction, is known as oxidation; a decrease in oxidation state is known as a reduction. Such reactions involve the formal transfer of electrons: a net gain in electrons being a reduction, and a net loss of electrons being oxidation. For pure elements, the oxidation state is zero.

  7. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    Where is the standard reduction potential of the half-reaction expressed versus the standard reduction potential of hydrogen. For standard conditions in electrochemistry (T = 25 °C, P = 1 atm and all concentrations being fixed at 1 mol/L, or 1 M) the standard reduction potential of hydrogen E red H+ ⊖ {\displaystyle E_{\text{red H+ ...

  8. Reducing agent - Wikipedia

    en.wikipedia.org/wiki/Reducing_agent

    An agent's oxidation state describes its degree of loss of electrons, where the higher the oxidation state then the fewer electrons it has. So initially, prior to the reaction, a reducing agent is typically in one of its lower possible oxidation states; its oxidation state increases during the reaction while that of the oxidizer decreases.

  9. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    2H 2 O → O 2 + 4H + + 4e − Oxidation (generation of dioxygen) 4H + + 4e − → 2H 2 Reduction (generation of dihydrogen) 2H 2 O → 2H 2 + O 2 Total Reaction Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond.