When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The vector Laplace operator, also denoted by , is a differential operator defined over a vector field. [7] The vector Laplacian is similar to the scalar Laplacian; whereas the scalar Laplacian applies to a scalar field and returns a scalar quantity, the vector Laplacian applies to a vector field , returning a vector quantity.

  3. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.

  4. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Gradient, divergence, Laplace–Beltrami operator [ edit ] The gradient of a function ϕ {\displaystyle \phi } is obtained by raising the index of the differential ∂ i ϕ d x i {\displaystyle \partial _{i}\phi dx^{i}} , whose components are given by:

  5. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    On functions, the Laplace–de Rham operator is actually the negative of the Laplace–Beltrami operator, as the conventional normalization of the codifferential assures that the Laplace–de Rham operator is (formally) positive definite, whereas the Laplace–Beltrami operator is typically negative. The sign is merely a convention, and both ...

  6. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    Table with the del operator in cartesian, cylindrical and spherical coordinates Operation Cartesian coordinates (x, y, z) Cylindrical coordinates (ρ, φ, z) Spherical coordinates (r, θ, φ), where θ is the polar angle and φ is the azimuthal angle α; Vector field A

  7. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  8. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The following table provides Laplace transforms for many common functions of a single variable. [31] [32] For definitions and explanations, see the Explanatory Notes at the end of the table. Because the Laplace transform is a linear operator, The Laplace transform of a sum is the sum of Laplace transforms of each term.

  9. Infinity Laplacian - Wikipedia

    en.wikipedia.org/wiki/Infinity_Laplacian

    In mathematics, the infinity Laplace (or -Laplace) operator is a 2nd-order partial differential operator, commonly abbreviated .It is alternately defined, for a function : of the variables = (, …,), by