When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols ∇ ⋅ ∇ {\displaystyle \nabla \cdot \nabla } , ∇ 2 {\displaystyle \nabla ^{2}} (where ∇ {\displaystyle \nabla } is the nabla operator ), or Δ ...

  3. d'Alembert operator - Wikipedia

    en.wikipedia.org/wiki/D'Alembert_operator

    In special relativity, electromagnetism and wave theory, the d'Alembert operator (denoted by a box: ), also called the d'Alembertian, wave operator, box operator or sometimes quabla operator [1] (cf. nabla symbol ) is the Laplace operator of Minkowski space .

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.

  5. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    The connection Laplacian, also known as the rough Laplacian, is a differential operator acting on the various tensor bundles of a manifold, defined in terms of a Riemannian- or pseudo-Riemannian metric. When applied to functions (i.e. tensors of rank 0), the connection Laplacian is often called the Laplace–Beltrami operator.

  6. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  7. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Gradient, divergence, Laplace–Beltrami operator [ edit ] The gradient of a function ϕ {\displaystyle \phi } is obtained by raising the index of the differential ∂ i ϕ d x i {\displaystyle \partial _{i}\phi dx^{i}} , whose components are given by:

  8. Del squared - Wikipedia

    en.wikipedia.org/wiki/Del_squared

    Laplace operator, a differential operator often denoted by the symbol ∇ 2; Hessian matrix, sometimes denoted by ∇ 2; Aitken's delta-squared process, a numerical analysis technique used for accelerating the rate of convergence of a sequence

  9. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    On functions, the Laplace–de Rham operator is actually the negative of the Laplace–Beltrami operator, as the conventional normalization of the codifferential assures that the Laplace–de Rham operator is (formally) positive definite, whereas the Laplace–Beltrami operator is typically negative. The sign is merely a convention, and both ...