Search results
Results From The WOW.Com Content Network
In mathematics, division by zero, division where the divisor ... [17] to obtain an invalid proof. For example: [18] Let x = 1. Multiply both sides by x to get = ...
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...
In arithmetic, and therefore algebra, division by zero is undefined. [7] Use of a division by zero in an arithmetical calculation or proof, can produce absurd or meaningless results. Assuming that division by zero exists, can produce inconsistent logical results, such as the following fallacious "proof" that one is equal to two [8]:
The report implied that Anderson had discovered the solution to division by zero, rather than simply attempting to formalize it. The report also suggested that Anderson was the first to solve this problem, when in fact the result of zero divided by zero has been expressed formally in a number of different ways (for example, NaN).
The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.
An element that is a left or a right zero divisor is simply called a zero divisor. [2] An element a that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero x such that ax = 0 may be different from the nonzero y such that ya = 0). If the ring is commutative, then the left and right zero divisors are the same.
In these enlarged number systems, division is the inverse operation to multiplication, that is a = c / b means a × b = c, as long as b is not zero. If b = 0, then this is a division by zero, which is not defined. [a] [4]: 246 In the 21-apples example, everyone would receive 5 apple and a quarter of an apple, thus avoiding any leftover.
A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed divisor without performing the division, usually by examining its digits. Although there are divisibility tests for numbers in any radix , or base, and they are all different, this article presents rules and examples only for decimal ...