Search results
Results From The WOW.Com Content Network
The zero-order hold (ZOH) is a mathematical model of the practical signal reconstruction done by a conventional digital-to-analog converter (DAC). [1] That is, it describes the effect of converting a discrete-time signal to a continuous-time signal by holding each sample value for one sample interval. It has several applications in electrical ...
A discrete signal or discrete-time signal is a time series consisting of a sequence of quantities. Unlike a continuous-time signal, a discrete-time signal is not a function of a continuous argument; however, it may have been obtained by sampling from a continuous-time signal.
Instead of using the Laplace transform (which is better for continuous-time signals), discrete-time signals are dealt with using the z-transform (notated with a corresponding capital letter, like () and ()), so a discrete-time system's transfer function can be written as:
Continuous wavelet transform of frequency breakdown signal. Used symlet with 5 vanishing moments.. In mathematics, the continuous wavelet transform (CWT) is a formal (i.e., non-numerical) tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously.
Similarly, the spectral energy density of signal x(t) is = | | where X(f) is the Fourier transform of x(t).. For example, if x(t) represents the magnitude of the electric field component (in volts per meter) of an optical signal propagating through free space, then the dimensions of X(f) would become volt·seconds per meter and () would represent the signal's spectral energy density (in volts ...
A pole-zero plot is plotted in the plane of a complex frequency domain, which can represent either a continuous-time or a discrete-time system: Continuous-time systems use the Laplace transform and are plotted in the s-plane : s = σ + j ω {\displaystyle s=\sigma +j\omega }
Block diagram illustrating the superposition principle and time invariance for a deterministic continuous-time single-input single-output system. The system satisfies the superposition principle and is time-invariant if and only if y 3 (t) = a 1 y 1 (t – t 0) + a 2 y 2 (t – t 0) for all time t, for all real constants a 1, a 2, t 0 and for all inputs x 1 (t), x 2 (t). [1]
Signal sampling representation. The continuous signal S(t) is represented with a green colored line while the discrete samples are indicated by the blue vertical lines. In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples".