Search results
Results From The WOW.Com Content Network
For every type T, except void and function types, there exist the types "array of N elements of type T". An array is a collection of values, all of the same type, stored contiguously in memory. An array of size N is indexed by integers from 0 up to and including N−1. Here is a brief example:
IEEE single/double, BigDecimal: Length-prefixed "short" Strings (up to 64 bytes), marker-terminated "long" Strings and (optional) back-references Arbitrary-length heterogenous arrays with end-marker Arbitrary-length key/value pairs with end-marker Structured Data eXchange Formats (SDXF) Big-endian signed 24-bit or 32-bit integer
modified_identifier_list «As «non_array_type««array_rank_specifier»» (multiple declarator); valid declaration statements are of the form Dim declarator_list , where, for the purpose of semantic analysis, to convert the declarator_list to a list of only single declarators:
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.
A double (eight bytes) will be 8-byte aligned. A long long (eight bytes) will be 8-byte aligned. A long double (eight bytes with Visual C++, sixteen bytes with GCC) will be 8-byte aligned with Visual C++ and 16-byte aligned with GCC. Any pointer (eight bytes) will be 8-byte aligned. Some data types are dependent on the implementation.
The type parameter must be a data type to which object can be converted via a known method, whether it be a builtin or a cast. The type can be a reference or an enumerator. All types of conversions that are well-defined and allowed by the compiler are performed using static_cas
An inefficient but straightforward implementation of a C language function to compute the Fletcher-16 checksum of an array of 8-bit data elements follows: uint16_t Fletcher16 ( uint8_t * data , int count ) { uint16_t sum1 = 0 ; uint16_t sum2 = 0 ; int index ; for ( index = 0 ; index < count ; ++ index ) { sum1 = ( sum1 + data [ index ]) % 255 ...
It is common to have a 'double width' integral type that has twice as many bits as the biggest hardware-supported type. Many languages also have bit-field types (a specified number of bits, usually constrained to be less than the maximum hardware-supported width) and range types (that can represent only the integers in a specified range).