Search results
Results From The WOW.Com Content Network
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
In mathematics, the notion of number has been extended over the centuries to include zero (0), [3] negative numbers, [4] rational numbers such as one half (), real numbers such as the square root of 2 and π, [5] and complex numbers [6] which extend the real numbers with a square root of −1 (and its combinations with real numbers by adding or ...
A number has a terminating or repeating expansion if and only if it is rational; this does not depend on the base. A number that terminates in one base may repeat in another (thus 0.3 10 = 0.0100110011001... 2). An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases.
The first mechanical calculators were invented in the 17th ... Rational number arithmetic is the branch of arithmetic that deals with the manipulation of numbers ...
The numbers 0–9 in Chinese huama (花碼) numerals. The ancient Chinese used numerals that look much like the tally system. [27] Numbers one through four were horizontal lines. Five was an X between two horizontal lines; it looked almost exactly the same as the Roman numeral for ten.
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
Hippasus is sometimes credited with the discovery of the existence of irrational numbers, following which he was drowned at sea. Pythagoreans preached that all numbers could be expressed as the ratio of integers, and the discovery of irrational numbers is said to have shocked them. However, the evidence linking the discovery to Hippasus is unclear.