Search results
Results From The WOW.Com Content Network
Alternate angles are the four pairs of angles that: have distinct vertex points, lie on opposite sides of the transversal and; both angles are interior or both angles are exterior. If the two angles of one pair are congruent (equal in measure), then the angles of each of the other pairs are also congruent.
In Euclid's Elements, the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry.One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in ...
The converse is often included as part of the theorem. (Note that the converse of the weaker, unsigned statement is not necessarily true.) The theorem is very similar to Ceva's theorem in that their equations differ only in sign. By re-writing each in terms of cross-ratios, the two theorems may be seen as projective duals. [3]
The exterior angle theorem is not valid in spherical geometry nor in the related elliptical geometry. Consider a spherical triangle one of whose vertices is the North Pole and the other two lie on the equator. The sides of the triangle emanating from the North Pole (great circles of the sphere) both meet the equator at right angles, so this ...
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle. In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2 n -gon, then the two sums of alternate interior angles are each equal to ( n -1) π {\displaystyle \pi } . [ 4 ]
The converse of the hinge theorem is also true: If the two sides of one triangle are congruent to two sides of another triangle, and the third side of the first triangle is greater than the third side of the second triangle, then the included angle of the first triangle is larger than the included angle of the second triangle.
The converse is true as well. ... The theorem can be proven using similar triangles (via the inscribed-angle theorem). Consider the angles of the triangles ...