When.com Web Search

  1. Ads

    related to: polynomial f x calculator with steps and two numbers 3 9

Search results

  1. Results From The WOW.Com Content Network
  2. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    Iteration steps of Bairstow's method Nr u v step length roots 0 1.833333333333 −5.500000000000 5.579008780071 −0.916666666667±2.517990821623 1 2.979026068546 −0.039896784438 2.048558558641 −1.489513034273±1.502845921479 2 3.635306053091 1.900693009946 1.799922838287 −1.817653026545±1.184554563945 3 3.064938039761 0.193530875538

  3. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Combining two consecutive steps of these methods into a single test, one gets a rate of convergence of 9, at the cost of 6 polynomial evaluations (with Horner's rule). On the other hand, combining three steps of Newtons method gives a rate of convergence of 8 at the cost of the same number of polynomial evaluation.

  4. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]

  5. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.

  6. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    This is the case, for example, if f(x) = x 3 − 2x + 2. For this function, it is even the case that Newton's iteration as initialized sufficiently close to 0 or 1 will asymptotically oscillate between these values. For example, Newton's method as initialized at 0.99 yields iterates 0.99, −0.06317, 1.00628, 0.03651, 1.00196, 0.01162, 1.00020 ...

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...

  9. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Any nth degree polynomial has exactly n roots in the complex plane, if counted according to multiplicity. So if f(x) is a polynomial with real coefficients which does not have a root at 0 (that is a polynomial with a nonzero constant term) then the minimum number of nonreal roots is equal to (+),