Search results
Results From The WOW.Com Content Network
The characteristic function always exists when treated as a function of a real-valued argument, unlike the moment-generating function. There are relations between the behavior of the characteristic function of a distribution and properties of the distribution, such as the existence of moments and the existence of a density function.
If X has a standard uniform distribution, then Y = X n has a beta distribution with parameters (1/n,1). As such, The Irwin–Hall distribution is the sum of n i.i.d. U(0,1) distributions. The Bates distribution is the average of n i.i.d. U(0,1) distributions. The standard uniform distribution is a special case of the beta distribution, with ...
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
Continuous uniform distribution. One of the simplest examples of a discrete univariate distribution is the discrete uniform distribution, where all elements of a finite set are equally likely. It is the probability model for the outcomes of tossing a fair coin, rolling a fair die, etc.
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
Uniform distribution may refer to: Continuous uniform distribution; Discrete uniform distribution; Uniform distribution (ecology) Equidistributed sequence; See also.
A 10,000 point Monte Carlo simulation of the distribution of the sample mean of a circular uniform distribution for N = 3 Probability densities (¯) for small values of . Densities for N > 3 {\displaystyle N>3} are normalised to the maximum density, those for N = 1 {\displaystyle N=1} and 2 {\displaystyle 2} are scaled to aid visibility.
An even stronger uniform convergence result for the empirical distribution function is available in the form of an extended type of law of the iterated logarithm. [ 3 ] (p 268 ) See asymptotic properties of the empirical distribution function for this and related results.