Ads
related to: photonic deep neural network
Search results
Results From The WOW.Com Content Network
An optical neural network is a physical implementation of an artificial neural network with optical components. Early optical neural networks used a photorefractive Volume hologram to interconnect arrays of input neurons to arrays of output with synaptic weights in proportion to the multiplexed hologram's strength. [ 2 ]
The emergence of both deep learning neural networks based on phase modulation, [15] and more recently amplitude modulation using photonic memories [16] have created a new area of photonic technologies for neuromorphic computing, [17] [18] leading to new photonic computing technologies, all on a chip such as the photonic tensor core. [19]
A neural processing unit (NPU), also known as AI accelerator or deep learning processor, is a class of specialized hardware accelerator [1] or computer system [2] [3] designed to accelerate artificial intelligence (AI) and machine learning applications, including artificial neural networks and computer vision.
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
The codebase for AlexNet was released under a BSD license, and had been commonly used in neural network research for several subsequent years. [20] [17] In one direction, subsequent works aimed to train increasingly deep CNNs that achieve increasingly higher performance on ImageNet.
It has applications in geophysics, seismic imaging, photonics and more recently in neural networks. [2] The adjoint state space is chosen to simplify the physical interpretation of equation constraints. [3] Adjoint state techniques allow the use of integration by parts, resulting in a form which explicitly contains the physically interesting ...