When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...

  3. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    The limit e itμ is the characteristic function of the constant random variable μ, and hence by the Lévy continuity theorem, ¯ converges in distribution to μ: X ¯ n → D μ for n → ∞ . {\displaystyle {\overline {X}}_{n}\,{\overset {\mathcal {D}}{\rightarrow }}\,\mu \qquad {\text{for}}\qquad n\to \infty .}

  4. Large deviations theory - Wikipedia

    en.wikipedia.org/wiki/Large_deviations_theory

    The central limit theorem can provide more detailed information about the behavior of than the law of large numbers. For example, we can approximately find a tail probability of M N {\displaystyle M_{N}} – the probability that M N {\displaystyle M_{N}} is greater than some value x {\displaystyle x} – for a fixed value of N {\displaystyle N} .

  5. Illustration of the central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Illustration_of_the...

    This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3

  6. Asymptotic distribution - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_distribution

    The central limit theorem gives only an asymptotic distribution. As an approximation for a finite number of observations, it provides a reasonable approximation only when close to the peak of the normal distribution; it requires a very large number of observations to stretch into the tails.

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    [4] [5] Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal distribution as the number of samples increases.

  8. Gaussian measure - Wikipedia

    en.wikipedia.org/wiki/Gaussian_measure

    Gaussian measures with mean = are known as centered Gaussian measures. The Dirac measure δ μ {\displaystyle \delta _{\mu }} is the weak limit of γ μ , σ 2 n {\displaystyle \gamma _{\mu ,\sigma ^{2}}^{n}} as σ → 0 {\displaystyle \sigma \to 0} , and is considered to be a degenerate Gaussian measure ; in contrast, Gaussian measures with ...

  9. Lindeberg's condition - Wikipedia

    en.wikipedia.org/wiki/Lindeberg's_condition

    In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.