Search results
Results From The WOW.Com Content Network
Other examples of unimodal distributions include Cauchy distribution, Student's t-distribution, chi-squared distribution and exponential distribution. Among discrete distributions, the binomial distribution and Poisson distribution can be seen as unimodal, though for some parameters they can have two adjacent values with the same probability.
Multimodal sentiment analysis is a technology for traditional text-based sentiment analysis, which includes modalities such as audio and visual data. [1] It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. [ 2 ]
Figure 1. A simple bimodal distribution, in this case a mixture of two normal distributions with the same variance but different means. The figure shows the probability density function (p.d.f.), which is an equally-weighted average of the bell-shaped p.d.f.s of the two normal distributions.
A bimodal distribution would have two high points rather than one. The shape of a distribution is sometimes characterised by the behaviours of the tails (as in a long or short tail). For example, a flat distribution can be said either to have no tails, or to have short tails.
Multimodal sentiment analysis is a technology for traditional text-based sentiment analysis, which includes modalities such as audio and visual data. [31] It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. [ 32 ]
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
The basic form as given by Box and Muller takes two samples from the uniform distribution on the interval (0,1) and maps them to two standard, normally distributed samples. The polar form takes two samples from a different interval, [−1,+1] , and maps them to two normally distributed samples without the use of sine or cosine functions.
One use for the probability integral transform in statistical data analysis is to provide the basis for testing whether a set of observations can reasonably be modelled as arising from a specified distribution. Specifically, the probability integral transform is applied to construct an equivalent set of values, and a test is then made of ...