Ad
related to: vertical line test for relational function calculator
Search results
Results From The WOW.Com Content Network
In mathematics, the vertical line test is a visual way to determine if a curve is a graph of a function or not. A function can only have one output, y , for each unique input, x . If a vertical line intersects a curve on an xy -plane more than once then for one value of x the curve has more than one value of y , and so, the curve does not ...
In general, implicit curves fail the vertical line test (meaning that some values of x are associated with more than one value of y) and so are not necessarily graphs of functions. However, the implicit function theorem gives conditions under which an implicit curve locally is given by the graph of a function (so in particular it has no self ...
5 potentially merging Horizontal line test and Vertical line test into monotonicity?
Schematic depiction of a function described metaphorically as a "machine" or "black box" that for each input yields a corresponding output The red curve is the graph of a function, because any vertical line has exactly one crossing point with the curve. A function f from a set X to a set Y is an assignment of one element of Y to each element of X.
Both of these were programmable and provided exponential and logarithmic functions; the HP had trigonometric functions (sine, cosine, and tangent) and hyperbolic trigonometric functions as well. The HP used the CORDIC (coordinate rotation digital computer) algorithm, [ 34 ] which allows for calculation of trigonometric functions using only ...
For premium support please call: 800-290-4726 more ways to reach us
Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]
Test of vertical wavy line with specified dimensions. Converted from the following vector PostScript source code: <pre>%! 10 setlinewidth 20 0 moveto 0 30 -10 45 -10 ...