Search results
Results From The WOW.Com Content Network
In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.
In mathematics, convergence tests are methods to determine if an infinite series converges or diverges. Pages in category "Convergence tests" The following 17 pages are in this category, out of 17 total.
The test can be useful for series where n appears as in a denominator in f. For the most basic example of this sort, the harmonic series ∑ n = 1 ∞ 1 / n {\textstyle \sum _{n=1}^{\infty }1/n} is transformed into the series ∑ 1 {\textstyle \sum 1} , which clearly diverges.
Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.
The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.
Business credit cards: Business credit cards work similarly to a revolving business line of credit, replenishing the amount you can borrow as you pay it back. But if you pay off the credit card in ...
One can state a one-sided comparison test by using limit superior. Let a n , b n ≥ 0 {\displaystyle a_{n},b_{n}\geq 0} for all n {\displaystyle n} . Then if lim sup n → ∞ a n b n = c {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with 0 ≤ c < ∞ {\displaystyle 0\leq c<\infty } and Σ n b n {\displaystyle \Sigma _{n}b ...