When.com Web Search

  1. Ads

    related to: machine learning for biomedical applications pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Machine learning in bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in...

    Machine learning in bioinformatics is the application of machine learning algorithms to bioinformatics, [1] including genomics, proteomics, microarrays, systems biology, evolution, and text mining. [ 2 ] [ 3 ]

  3. Biomedical data science - Wikipedia

    en.wikipedia.org/wiki/Biomedical_data_science

    Biomedical data science is a multidisciplinary field which leverages large volumes of data to promote biomedical innovation and discovery. Biomedical data science draws from various fields including Biostatistics, Biomedical informatics, and machine learning, with the goal of understanding biological and medical data.

  4. Biomedical text mining - Wikipedia

    en.wikipedia.org/wiki/Biomedical_text_mining

    SwellShark [118] is a framework for biomedical NER that requires no human-labeled data but does make use of resources for weak supervision (e.g., UMLS semantic types). The SparkText framework [119] uses Apache Spark data streaming, a NoSQL database, and basic machine learning methods to build predictive models from scientific articles.

  5. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  6. Health informatics - Wikipedia

    en.wikipedia.org/wiki/Health_informatics

    A pioneer in the use of artificial intelligence in healthcare was American biomedical informatician Edward H. Shortliffe. This field deals with utilization of machine-learning algorithms and artificial intelligence, to emulate human cognition in the analysis, interpretation, and comprehension of complicated medical and healthcare data.

  7. Biostatistics - Wikipedia

    en.wikipedia.org/wiki/Biostatistics

    Two important changes have been the ability to collect data on a high-throughput scale, and the ability to perform much more complex analysis using computational techniques. This comes from the development in areas as sequencing technologies, Bioinformatics and Machine learning (Machine learning in bioinformatics).

  1. Ad

    related to: machine learning for biomedical applications pdf