Search results
Results From The WOW.Com Content Network
The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic processes. In general, the conservation law states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but can be neither created nor destroyed.
James Prescott Joule (/ dʒ uː l /; [1] [2] [a] 24 December 1818 – 11 October 1889) was an English physicist. Joule studied the nature of heat and discovered its relationship to mechanical work. This led to the law of conservation of energy, which in turn led to the development of the first law of thermodynamics.
The history of thermodynamics is a fundamental strand in the history of physics, the history of chemistry, and the history of science in general. Due to the relevance of thermodynamics in much of science and technology, its history is finely woven with the developments of classical mechanics, quantum mechanics, magnetism, and chemical kinetics, to more distant applied fields such as ...
Josiah Willard Gibbs (/ ɡ ɪ b z /; [2] February 11, 1839 – April 28, 1903) was an American scientist who made significant theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynamics was instrumental in transforming physical chemistry into a rigorous deductive science.
He also combined Boyle's law, Charles's law, and Gay-Lussac's law to produce a combined gas law. PV/T = k [11] 1841 – Julius Robert von Mayer, an amateur scientist, writes a paper on the conservation of energy, but his lack of academic training leads to its rejection
This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process.
Researchers have made a breakthrough in applying the first law of thermodynamics to complex systems, rewriting the way we understand complex energetic systems.
The third law of thermodynamics states: As the temperature of a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value. This law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching absolute zero of temperature. This law provides an absolute ...