Search results
Results From The WOW.Com Content Network
Therefore radar did not advance science, but was instead a matter of technology and engineering. Maurice Ponte, one of the developers of radar in France, states: The fundamental principle of the radar belongs to the common patrimony of the physicists; after all, what is left to the real credit of the technicians is measured by the effective ...
A radar detector is an electronic device used by motorists to detect if their speed is being monitored by police or law enforcement using a radar gun. Most radar detectors are used so the driver can reduce the car's speed before being ticketed for speeding. In general sense, only emitting technologies, like doppler RADAR, or LIDAR can be detected.
John Call Cook (April 7, 1918 – October 12, 2012) was an American geophysicist who played a crucial role in establishing the field of ground-penetrating radar and is generally regarded as contributing the fundamental research to develop the field. [2] Cook is also known for demonstrating that aerial surveys can map surface radioactivity to ...
In solid-state physics, a quantum sensor is a quantum device that responds to a stimulus. Usually this refers to a sensor that, which has quantized energy levels, uses quantum coherence to measure a physical quantity, or uses entanglement to improve measurements beyond what can be done with classical sensors. [4]
The Valentine V1Gen2 boasts improved resistance to Blind Spot Detection systems in new cars and reduces false alarms from automatic store-door openers. Built-in Bluetooth 5.0 enables a wireless ...
Measurement and signature intelligence (MASINT) is a technical branch of intelligence gathering, which serves to detect, track, identify or describe the distinctive characteristics (signatures) of fixed or dynamic target sources. This often includes radar intelligence, acoustic intelligence, nuclear intelligence, and chemical and biological ...
A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. [1] It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal.
The radar mile is the time it takes for a radar pulse to travel one nautical mile, reflect off a target, and return to the radar antenna. Since a nautical mile is defined as 1,852 m, then dividing this distance by the speed of light (299,792,458 m/s), and then multiplying the result by 2 yields a result of 12.36 μs in duration.