Search results
Results From The WOW.Com Content Network
An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors). The thermal effects of the incident IR radiation can be followed through many temperature dependent phenomena. [2] Bolometers and microbolometers are based on changes in resistance.
Detection in the MWIR and LWIR windows is obtained using 30% [(Hg 0.7 Cd 0.3)Te] and 20% [(Hg 0.8 Cd 0.2)Te] cadmium respectively. HgCdTe can also detect in the short wave infrared SWIR atmospheric windows of 2.2 to 2.4 μm and 1.5 to 1.8 μm. HgCdTe is a common material in photodetectors of Fourier transform infrared spectrometers. This is ...
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
A nondispersive infrared sensor (or NDIR sensor) is a simple spectroscopic sensor often used as a gas detector.It is non-dispersive in the fact that no dispersive element (e.g a prism or diffraction grating as is often present in other spectrometers) is used to separate out (like a monochromator) the broadband light into a narrow spectrum suitable for gas sensing.
The detector used in a spectroradiometer is determined by the wavelength over which the light is being measured, as well as the required dynamic range and sensitivity of the measurements. Basic spectroradiometer detector technologies generally fall into one of three groups: photoemissive detectors (e.g. photomultiplier tubes), semiconductor ...
The method of Fourier-transform spectroscopy can also be used for absorption spectroscopy. The primary example is "FTIR Spectroscopy", a common technique in chemistry. In general, the goal of absorption spectroscopy is to measure how well a sample absorbs or transmits light at each different wavelength.
According to Safehome.org, Ring and ADT are two of the most popular home alarm systems, and around 94 million Americans have a security camera, alarm or other smart security device.
Commercially available laboratory-based chemical imaging systems emerged in the early 1990s (ref. 1-5). In addition to economic factors, such as the need for sophisticated electronics and extremely high-end computers, a significant barrier to commercialization of infrared imaging was that the focal plane array (FPA) needed to read IR images were not readily available as commercial items.