Search results
Results From The WOW.Com Content Network
The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity. There are both actual and the isentropic stagnation states for a typical gas or vapor. Sometimes it is advantageous to make a distinction between the actual and the isentropic stagnation states.
In fluid dynamics, an isentropic flow is a fluid flow that is both adiabatic and reversible. That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline.
The speed of sound in mathematical notation is conventionally represented by c, from the Latin celeritas meaning "swiftness". For fluids in general, the speed of sound c is given by the Newton–Laplace equation: c = K s ρ , {\displaystyle c={\sqrt {\frac {K_{s}}{\rho }}},} where
And 2 to 3s is the isentropic process from rotor inlet at 2 to rotor outlet at 3. The velocity triangle [ 2 ] (Figure 2.) for the flow process within the stage represents the change in fluid velocity as it flows first in the stator or the fixed blades and then through the rotor or the moving blades.
A compressor map is a chart which shows the performance of a turbomachinery compressor.This type of compressor is used in gas turbine engines, for supercharging reciprocating engines and for industrial processes, where it is known as a dynamic compressor.
An axial fan is a type of fan that causes gas to flow through it in an axial direction, parallel to the shaft about which the blades rotate. The flow is axial at entry and exit. The fan is designed to produce a pressure difference, and hence force, to cause a flow through the fan. Factors which determine the performance of the fan include the ...
The Clausius equation introduces the measurement of entropy change which describes the direction and quantifies the magnitude of simple changes such as heat transfer between systems — always from hotter body to cooler one spontaneously. Thermodynamic entropy is an extensive property, meaning that it scales with the size or extent of a system.
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]: