Search results
Results From The WOW.Com Content Network
The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.
Hamilton's optico-mechanical analogy is a conceptual parallel between trajectories in classical mechanics and wavefronts in optics, introduced by William Rowan Hamilton around 1831. [1] It may be viewed as linking Huygens' principle of optics with Maupertuis' principle of mechanics.
Principles of Optics, colloquially known as Born and Wolf, is an optics textbook written by Max Born and Emil Wolf that was initially published in 1959 by Pergamon Press. [1] After going through six editions with Pergamon Press, the book was transferred to Cambridge University Press who issued an expanded seventh edition in 1999. [ 2 ]
As one example, if there is free space between the two planes, the ray transfer matrix is given by: = [], where d is the separation distance (measured along the optical axis) between the two reference planes.
Hamilton's equations above work well for classical mechanics, but not for quantum mechanics, since the differential equations discussed assume that one can specify the exact position and momentum of the particle simultaneously at any point in time.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A straightforward example of this is photographic emulsion on a transparent substrate. The emulsion is exposed to the interference pattern, and is subsequently developed giving a transmittance which varies with the intensity of the pattern – the more light that fell on the plate at a given point, the darker the developed plate at that point.